Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 67(5): 761-775, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36935415

RESUMEN

Understanding the factors that underlie the physical exercise-induced increase in body core temperature (TCORE) is essential to developing strategies to counteract hyperthermic fatigue and reduce the risk of exertional heatstroke. This study analyzed the contribution of six factors to TCORE attained at fatigue in Wistar rats (n = 218) subjected to incremental-speed treadmill running: ambient temperature (TAMB), distance traveled, initial TCORE, body mass, measurement site, and heat loss index (HLI). First, we ran hierarchical multiple linear regression analyses with data from different studies conducted in our laboratory (n = 353 recordings). We observed that TAMB, distance traveled, initial TCORE, and measurement site were the variables with predictive power. Next, regression analyses were conducted with data for each of the following TCORE indices: abdominal (TABD), brain cortex (TBRAIN), or colonic (TCOL) temperature. Our findings indicated that TAMB, distance traveled (i.e., an exercise performance-related variable), initial TCORE, and HLI predicted the three TCORE indices at fatigue. Most intriguingly, HLI was inversely related to TABD and TBRAIN but positively associated with TCOL. Lastly, we compared the temperature values at fatigue among these TCORE indices, and the following descendent order was noticed - TCOL, TABD, and TBRAIN - irrespective of TAMB where experiments were conducted. In conclusion, TCORE in rats exercised to fatigue depends primarily on environmental conditions, performance, pre-exercise TCORE, and measurement site. Moreover, the influence of cutaneous heat loss on TCOL is qualitatively different from the influence on TABD and TBRAIN, and the temperature values at fatigue are not homogenous within the body core.


Asunto(s)
Regulación de la Temperatura Corporal , Temperatura Corporal , Ratas , Animales , Temperatura , Ratas Wistar , Fatiga
2.
J Therm Biol ; 108: 103270, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36031225

RESUMEN

Thermoregulatory changes may influence the rats' prolonged physical performance and are commonly evaluated during treadmill running. Therefore, we determined the reliability of performance and thermoregulatory parameters in rats subjected to incremental-speed exercises (i.e., we assessed whether the testing protocol provides measurements that are consistent and free from error). Twenty rats were subjected to two sessions of incremental exercises at 24 °C, separated by 48 h, until they were fatigued. The rats' performance and thermoregulatory responses were determined, and values concerning the reliability of these parameters [e.g., intraclass correlation coefficient (ICC) and minimal detectable change (MDC)] were calculated. Our data revealed that the core temperature (TCORE) at fatigue and heat loss threshold were the most reproducible parameters, showing good reliability (ICC between 0.75 and 0.90). Moreover, all performance parameters assessed, the change in TCORE, the rate of TCORE increase, and the TCORE increase-to-distance traveled ratio presented moderate reliability. We then investigated whether changes in performance and thermoregulation induced by a warm environment were greater than the MDC95% values determined in the first experiment. Eight rats were subjected to incremental exercises at two environmental conditions: 24 °C and 31 °C. Individual analyses showed that most rats presented thermoregulatory differences between exercises at 31 °C and 24 °C greater than the calculated MDC95% values; this was not the case for their performance. In conclusion, we provide data on the reliability of rats' performance and thermoregulatory parameters during incremental-speed running. Also, the exercise in a warm environment produced detectable thermoregulatory changes relative to the exercise under temperate conditions.


Asunto(s)
Regulación de la Temperatura Corporal , Carrera , Animales , Fatiga , Rendimiento Físico Funcional , Ratas , Ratas Wistar , Reproducibilidad de los Resultados
3.
An Acad Bras Cienc ; 94(suppl 1): e20210501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35648992

RESUMEN

Open-water diving in a polar environment is a psychophysiological challenge to the human organism. We evaluated the effect of short-term diving (i.e., 10 min) in Antarctic waters on autonomic cardiac control, thyroid hormone concentration, body temperatures, mood, and neuropsychological responses (working memory and sleepiness). Data collection was carried out at baseline, before, and after diving in four individuals divided into the supporting (n=2) and diving (n=2) groups. In the latter group, autonomic cardiac control (by measuring heart rate variability) was also assessed during diving. Diving decreased thyroid-stimulating hormone (effect size = 1.6) and thyroxine (effect size = 2.1) concentrations; these responses were not observed for the supporting group. Diving also reduced both the parasympathetic (effect size = 2.6) and sympathetic activities to the heart (ES > 3.0). Besides, diving reduced auricular (effect size > 3.0), skin [i.e., hand (effect size = 1.2) and face (effect size = 1.5)] temperatures compared to pre-dive and reduced sleepiness state (effect size = 1.3) compared to basal, without changing performance in the working memory test. In conclusion, short-term diving in icy waters affects the hypothalamic-pituitary-thyroid axis, modulates autonomic cardiac control, and reduces body temperature, which seems to decrease sleepiness.


Asunto(s)
Buceo , Regiones Antárticas , Brasil , Buceo/fisiología , Congelación , Frecuencia Cardíaca/fisiología , Humanos , Somnolencia , Hormonas Tiroideas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...